

Transient Recording with a uDIMM

EPICS Collaboration Meeting: Embedded Controllers

Argonne, June 15. 2006

Matthias Clausen on behalf of Erwin Gadwinkel and Albert Kagarmanov DESY Cryogenic Controls

The µCDIMM

From the Web-Site: http://www.arcturusnetworks.com/coldfire5282.shtml

Hardware Support

8/16 MB RAM 4/8/16 MB NOR Flash **NAND Flash Version Available** 66 MHz ColdFire RISC Core 32 Bit wide SDRAM addressing 512KB on-chip flash 64 Kbytes of static RAM **eMAC DSP functionality** 10/100 Ethernet MAC **Ethernet PHY CAN 2.0 Bus interface** Two RS232 serial UARTs **QSPI** with four chip selects QADC A-to-D converter Four 32-bit timers **Eight 16-bit timer channels** Four periodic interrupt timers **I2C** bus controller 16 dedicated GPI/O **BDM** for debug Operation from -40C to +85C

Developed Basic-Board with µCDIMM (MCF 5282) / realized I/O-System

Basic-Board with µCDIMM (MCF 5282) / Component placement

Using the Basic-Board with μ CDIMM (MCF 5282) as a Transient Recorder to monitor the 3 Phases (R S T) of a 400 VAC Power System

Using the Basic-Board with µCDIMM (MCF 5282) as a Transient Recorder to monitor the 3 Phases (R S T) of a 400 VAC Power System

μCDIMM Basic-Board Analog-Input-Configurations (for each Channel, Resolution 10 Bit)

With this input circuit it is possible to measure currents in the range of 0....+/-20 mA or voltages in the range of 0....3.3 V up to 20 V

μCDIMM Basic-Board Digital-Input-Output-Circuits

µCDIMM Basic-Board Extension-Connector

The used housing allows a second board of the same size as the Basic-Board. This second board can be connected to the Extension-Connector and can carry a variety of special circuits.

Example: Circuit with 24 opto isolated digital inputs to fast monitor 24 digital signals in a control system in case of fault finding

(Hardware) Outlook

With the developed Hardware around the µCDIMM it will be possible to use the unit in many Applications.

The possibility to add an Extension-Board to the Basic-Board in the same Case opens even more Application Areas.

Note:

All the Applications need hardware and software!

Software Support

Using the uDimm for a transient reorder was triggered by a presentation from Eric Norum about one year ago.

- uDimm provides all he necessary functionality for a transient recorder on the chip
- Rtems support for the uDimm allows to run EPICS natively

After having made the decision to use the uDimm we've got a lot of support from Eric

- Getting Rtems running
- Support for Generic Transient Recorder (GTR)
- powerMonitor record support
- Driver for the ADC on the uDimm

EPICS Database

Generic Transient Recorder records:

- http://www.aps.anl.gov/epics/modules/analog/gtr/R1-2/gtr.html
- http://www-csr.bessy.de/control/Epics02/THU-AM/pdf/transientRecorders.pdf

Additional records

- Beside raw value waveforms -> EGU based waveforms
- Utility records

Some Information on Software

- Epics R3.14.8.2 RTEMS on uDimm ColdFire 5282
- Freq=50Hz, RMS_SAMPLE_COUNT = 156
- Currently default number of points
 - numberPTS (number of post trigger samples to take)=8000
 - numberPPS (number of prePost samples)=4000
- Add new records
 - powerMonitor:uniPolarInput (biPolar current if 0, otherwise unipolar)
 - powerMonitor:RawA_ai (ai-raw value, not so useful, mostly for testing) for simplify count2Volts understanding we're adding
 - powerMonitor:PhaseA_calc RMS in volts
 - powerMonitor:HIGH_ao default level in volts i.e. 220 380 etc
 - powerMonitor:RawVeff_ao
 - max Veff for triggering in volts i.e 240, 390 etc

Screendumps from a ,sign wave'

(flipped by harware to gain resolution)

Screendumps: Power-Failure Simulaion

Outlook

About 20 units will be installed at DESY

Additional Applications possible

- Transient recorder for digital values
- Adding 16bit ADC to extension port

Thanks to Eric for his help!!

